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ABSTRACT Rifamycins are widely used for treating mycobacterial and staphylococcal
infections. Drug-drug interactions (DDI) caused by rifampicin (RIF) are a major issue. We
used a model-based approach to predict the magnitude of DDI with RIF and rifabutin
(RBT) for 217 cytochrome P450 (CYP) substrates. On average, DDI caused by low-dose
RIF were twice as potent as those caused by RBT. Contrary to RIF, RBT appears unlikely
to cause severe DDI, even with sensitive CYP substrates.
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Rifampicin (RIF [also known as rifampin]) is a first-line antimicrobial agent for various in-
fectious diseases, such as tuberculosis (TB), brucellosis, and some staphylococcal infec-

tions, including infectious endocarditis and bone and joint infections. A major issue associ-
ated with rifampicin use is drug-drug interactions (DDI). Rifampicin is a potent inducer of
several cytochrome P450 (CYP) and drug transporters, including P-glycoprotein (P-gP).
Rifampicin may be responsible for strong DDI when coadministered with sensitive CYP sub-
strate drugs (1). Rifabutin (RBT) is another rifamycin agent that shows a similar antimicrobial
activity (2). It is considered an alternative to rifampicin for TB therapy (3, 4). In addition,
increasing data suggest its potential for staphylococcal infections (2, 5–8). The induction po-
tency of rifabutin is significant in vitro (9). However, rifabutin is considered a less potent
drug inducer in vivo and should cause fewer strong DDI than rifampicin (10, 11), but com-
parative data are limited (12, 13). The aim of this study was to compare the magnitudes of
DDI caused by rifampicin and rifabutin by using a modeling approach.

We used the In vivo Mechanistic Static Model (IMSM) implemented in the DDI-
Predictor website (14–16) to calculate and compare the magnitudes of DDI caused by
rifampicin (450 to 600mg per day [RIF600]) and rifabutin (300mg/day [RBT300]) for
substrates of CYP3A4, CYP2C9, CYP2C19, and CYP1A2. The model implemented in the
DDI-Predictor website has been previously validated for a large number of CYP sub-
strates and interactors (17–20).

The metric used to quantify DDI magnitude was RAUC, defined as the ratio of area
under the concentration-time curve of the substrate drug coadministered with the in-
ducer (AUC*) over that of the substrate drug alone (AUC). The IMSM model for CYP
induction can be summarized as

RAUC ¼ AUC�

AUC
¼ 1

1 1
P

ðCRCYP � ICCYPÞ
(1)

where CR is the contribution ratio of each CYP in the drug oral clearance, ranging from
0 to 1, and IC is the potency of induction, ranging from 0 to 11 theoretically for each
CYP involved. IC values estimated in a previous study (19) for rifabutin at 300 mg/day
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(RBT300) and rifampicin at 600 mg/day (RIF600) were 2.15 and 7.7, 0.67 and 1.22, 4.2
and 4.2, and 0.03 and 1.44 for CYP3A4, -2C9, -2C19, and -1A2, respectively. External val-
idation of the model was performed by comparing the predicted RAUC to observed
data reported in the literature for DDI caused by the two drugs.

Then, we predicted the RAUC for every drug recorded in the DDI-Predictor database,
except those metabolized only by CYP2D6, as the activity of this CYP cannot be
induced (17). The interactions were classified as weak (0.5 # RAUC # 1), moderate (0.2 ,

RAUC , 0.5), and strong (RAUC # 0.2) (21). We compared the magnitudes of drug interac-
tions caused by rifabutin at 300mg/day (RBT300) and rifampicin at 450 to 600mg/day
(RIF600).

Detailed results of external validation are shown in the supplemental material. The
supplemental material also provides data on CYP substrate drugs and other metabo-
lism and transporter pathways (12, 13, 22–106). Figure 1 shows the plot of predicted
versus observed AUC ratios. Model-based predictions correlated well with observed
AUC ratios for both drugs.

Model predictions for 217 substrates of the DDI-Predictor database are summarized in
Fig. 2. For RIF600 and RBT300, the median (with interquartile range in parentheses) RAUC
values were 0.22 (0.16 to 0.41) and 0.47 (0.36 to 0.61), respectively. On average, DDI caused
by RIF600 were twice as potent than those caused by RBT300. Strong DDI were observed
for 44% of substrates when coadministered with RIF600 and for only 1.05% of substrates
when coadministered with RBT300. Moderate DDI were observed for 42% and 56% of sub-
strates when coadministered with RIF600 and RBT300, respectively. Weak DDI were
observed in 14% and 43% of cases with RIF600 and RBT300, respectively. Table 1 shows
the proportion of DDI classified as strong, moderate, and weak when switching from
RIF600 to RBT300, those dosages being considered equivalent, at least for TB therapy
(107). The use of RBT300 instead of RIF600 would be associated with a lower magnitude of
DDI for most CYP substrates.

As an illustration, Table 2 shows the predicted AUC for a selection of 10 CYP substrate
drugs when coadministered with RIF600 and RBT300. We selected some substrates
highly selective of a given CYP pathway and others with a multiple-CYP metabolism.
Predictions for all 217 substrates are available on the DDI-Predictor website (https://
www.ddi-predictor.org/).

Our model-based analysis confirmed that the magnitudes of DDI caused by rifampi-
cin and rifabutin are quite different. Rifabutin at 300mg/day has lower induction po-
tency than the equivalent dosage of rifampicin (600mg/day). Consequently, rifabutin

FIG 1 Predicted versus observed AUC ratio of substrate drugs for DDI caused by rifampicin and
rifabutin reported in the literature. The solid line is the line of identity (y = x). The dotted line is y = 0.5x,
and the combined dashed and dotted line is y = 2x. Abbreviations: RBT300, rifabutin at 300 mg/day
(red circles); RIF600, rifampicin at 600 mg/day (cyan circles).
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is associated with much lower proportions of severe and moderate DDI. Indeed, rifam-
picin is the most potent CYP inducer in the DDI-Predictor database, and its induction
potency is even greater when used at a higher dose of 1,200mg/day (13), which is
common in the therapy of bone and joint infections. Our results suggest that rifabutin
could be more convenient and safer than rifampicin regarding DDI. While the pre-
dicted AUC ratio could be used for dosage adjustment of substrate drugs when coad-
ministered with rifamycin agents, strong DDI with a predicted AUC ratio of# 0.2 would
require very large dose increases, which raises safety concerns. Such strong DDI are
usually considered contraindications. As rifabutin can only cause weak to moderate
DDI, rates of drug switch or dose increases of the substrate drug would be lower.

This study has several limitations. Only CYP pathways are formally incorporated in the
model (equation 1). This means that the CR parameters and AUC ratios may be less accu-
rate for drugs with non-CYP pathways that are also altered by RIF or RBT. However,
because our approach is only based on in vivo data, the influence of drug inducers on
other pathways may be indirectly quantified and considered. Indeed, the model prediction
correlates well with observations, even for drugs that are known substrates of transporters
and enzymes other than CYP, as shown in Table S1 in the supplemental material. It is note-
worthy that rifabutin is also a substrate of CYP3A4, unlike rifampicin. Therefore, coadminis-
tration with CYP3A4 inducers and inhibitors may alter rifabutin pharmacokinetics and its
induction potency. We only considered one dosage of rifabutin in our predictions, because
no data were available to derive estimates for other dosages. It is possible that higher dos-
ages of rifabutin could result in a greater magnitude of DDI.

Further clinical evaluation is necessary to assess whether rifabutin can be a safe and
effective alternative to rifampicin. However, our model-based analysis confirms that rifa-
butin has a more favorable DDI profile than rifampicin. Contrary to rifampicin, rifabutin
appears unlikely to cause strong DDI (i.e., with an RAUC of ,0.2), even with sensitive CYP
substrate drugs.

FIG 2 Box plot of predicted AUC ratios for 217 drug-drug interactions between CYP substrates and
rifamycin agents. Abbreviations: RIF 600; rifampicin at 600 mg/day; RBT 300, rifabutin at 300 mg/day.

TABLE 1 Compared classification of DDI caused by rifampicin and rifabutina

DDI with RBT300

No. (%) of DDI with RIF600

Moderate (n=91) Strong (n=95)
Strong 0 (0) 1 (1)
Moderate 28 (30.8) 94 (99)
Weak 63 (69.2) 0 (0)
aRBT300, rifabutin at 300 mg/day; RIF600, rifampicin at 600 mg/day.
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